TY - GEN
T1 - Hallucinative topological memory for zero-shot visual planning
AU - Liu, Kara
AU - Kurutach, Thanard
AU - Tung, Christine
AU - Abbeel, Pieter
AU - Tamar, Aviv
N1 - Publisher Copyright: © 2020 37th International Conference on Machine Learning, ICML 2020. All rights reserved.
PY - 2020
Y1 - 2020
N2 - In visual planning (VP), an agent learns to plan goal-directed behavior from observations of a dynamical system obtained offline, e.g., images obtained from self-supervised robot interaction. Most previous works on VP approached the problem by planning in a learned latent space, resulting in low-quality visual plans, and difficult training algorithms. Here, instead, we propose a simple VP method that plans directly in image space and displays competitive performance. We build on the semi-parametric topological memory (SPTM) method: image samples are treated as nodes in a graph, the graph connectivity is learned from image sequence data, and planning can be performed using conventional graph search methods. We propose two modifications on SPTM. First, we train an energy-based graph connectivity function using contrastive predictive coding that admits stable training. Second, to allow zero-shot planning in new domains, we learn a conditional VAE model that generates images given a context describing the domain, and use these hallucinated samples for building the connectivity graph and planning. We show that this simple approach significantly outperform the SOTA VP methods, in terms of both plan interpretability and success rate when using the plan to guide a trajectoryfollowing controller. Interestingly, our method can pick up non-Trivial visual properties of objects, such as their geometry, and account for it in the plans.
AB - In visual planning (VP), an agent learns to plan goal-directed behavior from observations of a dynamical system obtained offline, e.g., images obtained from self-supervised robot interaction. Most previous works on VP approached the problem by planning in a learned latent space, resulting in low-quality visual plans, and difficult training algorithms. Here, instead, we propose a simple VP method that plans directly in image space and displays competitive performance. We build on the semi-parametric topological memory (SPTM) method: image samples are treated as nodes in a graph, the graph connectivity is learned from image sequence data, and planning can be performed using conventional graph search methods. We propose two modifications on SPTM. First, we train an energy-based graph connectivity function using contrastive predictive coding that admits stable training. Second, to allow zero-shot planning in new domains, we learn a conditional VAE model that generates images given a context describing the domain, and use these hallucinated samples for building the connectivity graph and planning. We show that this simple approach significantly outperform the SOTA VP methods, in terms of both plan interpretability and success rate when using the plan to guide a trajectoryfollowing controller. Interestingly, our method can pick up non-Trivial visual properties of objects, such as their geometry, and account for it in the plans.
UR - http://www.scopus.com/inward/record.url?scp=85105138417&partnerID=8YFLogxK
M3 - منشور من مؤتمر
T3 - 37th International Conference on Machine Learning, ICML 2020
SP - 6215
EP - 6226
BT - 37th International Conference on Machine Learning, ICML 2020
A2 - Daume, Hal
A2 - Singh, Aarti
T2 - 37th International Conference on Machine Learning, ICML 2020
Y2 - 13 July 2020 through 18 July 2020
ER -