Guiding LLM to Fool Itself: Automatically Manipulating Machine Reading Comprehension Shortcut Triggers

Mosh Levy, Shauli Ravfogel, Yoav Goldberg

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Recent applications of LLMs in Machine Reading Comprehension (MRC) systems have shown impressive results, but the use of shortcuts, mechanisms triggered by features spuriously correlated to the true label, has emerged as a potential threat to their reliability. We analyze the problem from two angles: LLMs as editors, guided to edit text to mislead LLMs; and LLMs as readers, who answer questions based on the edited text. We introduce a framework that guides an editor to add potential shortcuts-triggers to samples. Using GPT4 as the editor, we find it can successfully edit trigger shortcut in samples that fool LLMs. Analysing LLMs as readers, we observe that even capable LLMs can be deceived using shortcut knowledge. Strikingly, we discover that GPT4 can be deceived by its own edits (15% drop in F1). Our findings highlight inherent vulnerabilities of LLMs to shortcut manipulations. We publish ShortcutQA, a curated dataset generated by our framework for future research.

Original languageEnglish
Title of host publicationFindings of the Association for Computational Linguistics
Subtitle of host publicationEMNLP 2023
PublisherAssociation for Computational Linguistics (ACL)
Pages8495-8505
Number of pages11
ISBN (Electronic)9798891760615
DOIs
StatePublished - 1 Jan 2023
Event2023 Findings of the Association for Computational Linguistics: EMNLP 2023 - Singapore, Singapore
Duration: 6 Dec 202310 Dec 2023

Publication series

NameFindings of the Association for Computational Linguistics: EMNLP 2023

Conference

Conference2023 Findings of the Association for Computational Linguistics: EMNLP 2023
Country/TerritorySingapore
CitySingapore
Period6/12/2310/12/23

All Science Journal Classification (ASJC) codes

  • Computational Theory and Mathematics
  • Computer Science Applications
  • Information Systems
  • Language and Linguistics
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Guiding LLM to Fool Itself: Automatically Manipulating Machine Reading Comprehension Shortcut Triggers'. Together they form a unique fingerprint.

Cite this