TY - JOUR
T1 - Geometrical determinants of neuronal actin waves
AU - Tomba, Caterina
AU - Braini, Celine
AU - Bugnicourt, Ghislain
AU - Cohen, Floriane
AU - Friedrich, Benjamin M.
AU - Gov, Nir
AU - Villard, Catherine
N1 - We thank Isabelle Grandjean and Manon Chartier from the Animal Facility of the Curie Institute for their support for mice. This work was performed in part in the Technological platform of Institute Pierre-Gilles de Gennes (UMS 3750) and in other part in the NanoFab facility of Institut Néel. This work was supported in part by the European Research Council Advanced Grant No. 321107 “CellO,” ANR Investissement d'Avenir, and the IPGG Labex and Equipex. N.S.G. is the incumbent of the Lee and William Abramowitz Professorial Chair of Biophysics. Author Contributions CT and CV designed the experiments and analyzed the data. CT, CB, and FC did neuron cultures and time-lapse experiments. GB contributed to the exploratory phase of experiments leading to this work. NG did the modeling and BF contributed to it. BF, NG, CT, and CV wrote the paper.
PY - 2017/3/29
Y1 - 2017/3/29
N2 - Hippocampal neurons produce in their early stages of growth propagative, actin-rich dynamical structures called actin waves. The directional motion of actin waves from the soma to the tip of neuronal extensions has been associated with net forward growth, and ultimately with the specification of neurites into axon and dendrites. Here, geometrical cues are used to control actin wave dynamics by constraining neurons on adhesive stripes of various widths. A key observable, the average time between the production of consecutive actin waves, or mean inter-wave interval (IWI), was identified. It scales with the neurite width, and more precisely with the width of the proximal segment close to the soma. In addition, the IWI is independent of the total number of neurites. These two results suggest a mechanistic model of actin wave production, by which the material conveyed by actin waves is assembled in the soma until it reaches the threshold leading to the initiation and propagation of a new actin wave. Based on these observations, we formulate a predictive theoretical description of actin wave-driven neuronal growth and polarization, which consistently accounts for different sets of experiments.
AB - Hippocampal neurons produce in their early stages of growth propagative, actin-rich dynamical structures called actin waves. The directional motion of actin waves from the soma to the tip of neuronal extensions has been associated with net forward growth, and ultimately with the specification of neurites into axon and dendrites. Here, geometrical cues are used to control actin wave dynamics by constraining neurons on adhesive stripes of various widths. A key observable, the average time between the production of consecutive actin waves, or mean inter-wave interval (IWI), was identified. It scales with the neurite width, and more precisely with the width of the proximal segment close to the soma. In addition, the IWI is independent of the total number of neurites. These two results suggest a mechanistic model of actin wave production, by which the material conveyed by actin waves is assembled in the soma until it reaches the threshold leading to the initiation and propagation of a new actin wave. Based on these observations, we formulate a predictive theoretical description of actin wave-driven neuronal growth and polarization, which consistently accounts for different sets of experiments.
UR - http://www.scopus.com/inward/record.url?scp=85018357376&partnerID=8YFLogxK
U2 - 10.3389/fncel.2017.00086
DO - 10.3389/fncel.2017.00086
M3 - مقالة
SN - 1662-5102
VL - 11
JO - FRONTIERS IN CELLULAR NEUROSCIENCE
JF - FRONTIERS IN CELLULAR NEUROSCIENCE
M1 - 86
ER -