Genomic instabilities, cellular senescence, and aging: In vitro, in vivo and aging-like human syndromes

Gabriel Lidzbarsky, Danielle Gutman, Huda Adwan Shekhidem, Lital Sharvit, Gil Atzmon

Research output: Contribution to journalReview articlepeer-review

Abstract

As average life span and elderly people prevalence in the western world population is gradually increasing, the incidence of age-related diseases such as cancer, heart diseases, diabetes, and dementia is increasing, bearing social and economic consequences worldwide. Understanding the molecular basis of aging-related processes can help extend the organism's health span, i.e., the life period in which the organism is free of chronic diseases or decrease in basic body functions. During the last few decades, immense progress was made in the understanding of major components of aging and healthy aging biology, including genomic instability, telomere attrition, epigenetic changes, proteostasis, nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, and intracellular communications. This progress has been made by three spear-headed strategies: in vitro (cell and tissue culture from various sources), in vivo (includes diverse model and non-model organisms), both can be manipulated and translated to human biology, and the study of aging-like human syndromes and human populations. Herein, we will focus on current repository of genomic "senescence" stage of aging, which includes health decline, structural changes of the genome, faulty DNA damage response and DNA damage, telomere shortening, and epigenetic alterations. Although aging is a complex process, many of the "hallmarks" of aging are directly related to DNA structure and function. This review will illustrate the variety of these studies, done in in vitro, in vivo and human levels, and highlight the unique potential and contribution of each research level and eventually the link between them.

Original languageAmerican English
Article number104
JournalFrontiers in Medicine
Volume5
Issue numberAPR
DOIs
StatePublished - 1 Apr 2018

Keywords

  • Aging
  • Cellular senescence
  • DNA damage
  • Epigenetics
  • Telomeres

All Science Journal Classification (ASJC) codes

  • General Medicine

Fingerprint

Dive into the research topics of 'Genomic instabilities, cellular senescence, and aging: In vitro, in vivo and aging-like human syndromes'. Together they form a unique fingerprint.

Cite this