TY - JOUR
T1 - Genome-scale analysis of translation elongation with a ribosome flow model
AU - Reuveni, Shlomi
AU - Meilijson, Isaac
AU - Kupiec, Martin
AU - Ruppin, Eytan
AU - Tuller, Tamir
N1 - EU [PIRG04-GA-2008-239317]; Israeli Council for higher education; Israel Science Foundation; James S. McDonnell FoundationTT is a Koshland Scholar at Weizmann Institute of Science and is travel supported by EU grant PIRG04-GA-2008-239317. SR acknowledges support from the Converging Technologies program of the Israeli Council for higher education. MK is supported by grants from the Israel Science Foundation and the James S. McDonnell Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
PY - 2011/9
Y1 - 2011/9
N2 - We describe the first large scale analysis of gene translation that is based on a model that takes into account the physical and dynamical nature of this process. The Ribosomal Flow Model (RFM) predicts fundamental features of the translation process, including translation rates, protein abundance levels, ribosomal densities and the relation between all these variables, better than alternative ('non-physical') approaches. In addition, we show that the RFM can be used for accurate inference of various other quantities including genes' initiation rates and translation costs. These quantities could not be inferred by previous predictors. We find that increasing the number of available ribosomes (or equivalently the initiation rate) increases the genomic translation rate and the mean ribosome density only up to a certain point, beyond which both saturate. Strikingly, assuming that the translation system is tuned to work at the pre-saturation point maximizes the predictive power of the model with respect to experimental data. This result suggests that in all organisms that were analyzed (from bacteria to Human), the global initiation rate is optimized to attain the pre-saturation point. The fact that similar results were not observed for heterologous genes indicates that this feature is under selection. Remarkably, the gap between the performance of the RFM and alternative predictors is strikingly large in the case of heterologous genes, testifying to the model's promising biotechnological value in predicting the abundance of heterologous proteins before expressing them in the desired host.
AB - We describe the first large scale analysis of gene translation that is based on a model that takes into account the physical and dynamical nature of this process. The Ribosomal Flow Model (RFM) predicts fundamental features of the translation process, including translation rates, protein abundance levels, ribosomal densities and the relation between all these variables, better than alternative ('non-physical') approaches. In addition, we show that the RFM can be used for accurate inference of various other quantities including genes' initiation rates and translation costs. These quantities could not be inferred by previous predictors. We find that increasing the number of available ribosomes (or equivalently the initiation rate) increases the genomic translation rate and the mean ribosome density only up to a certain point, beyond which both saturate. Strikingly, assuming that the translation system is tuned to work at the pre-saturation point maximizes the predictive power of the model with respect to experimental data. This result suggests that in all organisms that were analyzed (from bacteria to Human), the global initiation rate is optimized to attain the pre-saturation point. The fact that similar results were not observed for heterologous genes indicates that this feature is under selection. Remarkably, the gap between the performance of the RFM and alternative predictors is strikingly large in the case of heterologous genes, testifying to the model's promising biotechnological value in predicting the abundance of heterologous proteins before expressing them in the desired host.
UR - http://www.scopus.com/inward/record.url?scp=80053446353&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1002127
DO - 10.1371/journal.pcbi.1002127
M3 - مقالة
SN - 1553-734X
VL - 7
JO - PLoS Computational Biology
JF - PLoS Computational Biology
IS - 9
M1 - e1002127
ER -