TY - GEN
T1 - Generic Compiler for Publicly Verifiable Covert Multi-Party Computation
AU - Faust, Sebastian
AU - Hazay, Carmit
AU - Kretzler, David
AU - Schlosser, Benjamin
N1 - Publisher Copyright: © 2021, International Association for Cryptologic Research.
PY - 2021
Y1 - 2021
N2 - Covert security has been introduced as a compromise between semi-honest and malicious security. In a nutshell, covert security guarantees that malicious behavior can be detected by the honest parties with some probability, but in case detection fails all bets are off. While the security guarantee offered by covert security is weaker than full-fledged malicious security, it comes with significantly improved efficiency. An important extension of covert security introduced by Asharov and Orlandi (ASIACRYPT’12) is public verifiability, which allows the honest parties to create a publicly verifiable certificate of malicious behavior. Public verifiability significantly strengthen covert security as the certificate allows punishment via an external party, e.g., a judge. Most previous work on publicly verifiable covert (PVC) security focuses on the two-party case, and the multi-party case has mostly been neglected. In this work, we introduce a novel compiler for multi-party PVC secure protocols with no private inputs. The class of supported protocols includes the preprocessing of common multi-party computation protocols that are designed in the offline-online model. Our compiler leverages time-lock encryption to offer high probability of cheating detection (often also called deterrence factor) independent of the number of involved parties. Moreover, in contrast to the only earlier work that studies PVC in the multi-party setting (CRYPTO’20), we provide the first full formal security analysis.
AB - Covert security has been introduced as a compromise between semi-honest and malicious security. In a nutshell, covert security guarantees that malicious behavior can be detected by the honest parties with some probability, but in case detection fails all bets are off. While the security guarantee offered by covert security is weaker than full-fledged malicious security, it comes with significantly improved efficiency. An important extension of covert security introduced by Asharov and Orlandi (ASIACRYPT’12) is public verifiability, which allows the honest parties to create a publicly verifiable certificate of malicious behavior. Public verifiability significantly strengthen covert security as the certificate allows punishment via an external party, e.g., a judge. Most previous work on publicly verifiable covert (PVC) security focuses on the two-party case, and the multi-party case has mostly been neglected. In this work, we introduce a novel compiler for multi-party PVC secure protocols with no private inputs. The class of supported protocols includes the preprocessing of common multi-party computation protocols that are designed in the offline-online model. Our compiler leverages time-lock encryption to offer high probability of cheating detection (often also called deterrence factor) independent of the number of involved parties. Moreover, in contrast to the only earlier work that studies PVC in the multi-party setting (CRYPTO’20), we provide the first full formal security analysis.
KW - Covert security
KW - Multi-party computation
KW - Public verifiability
KW - Time-lock puzzles
UR - http://www.scopus.com/inward/record.url?scp=85111469198&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-77886-6_27
DO - 10.1007/978-3-030-77886-6_27
M3 - منشور من مؤتمر
SN - 9783030778859
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 782
EP - 811
BT - Advances in Cryptology – EUROCRYPT 2021 - 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings
A2 - Canteaut, Anne
A2 - Standaert, François-Xavier
PB - Springer Science and Business Media Deutschland GmbH
T2 - 40th Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2021
Y2 - 17 October 2021 through 21 October 2021
ER -