Generative Low-Shot Network Expansion

Adi Hayat, Mark Kliger, Shachar Fleishman, Daniel Cohen-Or

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Conventional deep learning classifiers are static in the sense that they are trained on a predefined set of classes and learning to classify a novel class typically requires re-training. In this work, we address the problem of Low-Shot network-expansion learning. We introduce a learning framework which enables expanding a pre-trained (base) deep network to classify novel classes when the number of examples for the novel classes is particularly small. We present a simple yet powerful hard distillation method where the base network is augmented with additional weights to classify the novel classes, while keeping the weights of the base network unchanged. We show that since only a small number of weights needs to be trained, the hard distillation excels in low-shot training scenarios. Furthermore, hard distillation avoids detriment to classification performance on the base classes. Finally, we show that low-shot network expansion can be done with a very small memory footprint by using a compact generative model of the base classes training data with only a negligible degradation relative to learning with the full training set.

Original languageEnglish
Title of host publication2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6072-6077
Number of pages6
ISBN (Electronic)9781538680940
DOIs
StatePublished - 27 Dec 2018
Event2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018 - Madrid, Spain
Duration: 1 Oct 20185 Oct 2018

Publication series

NameIEEE International Conference on Intelligent Robots and Systems

Conference

Conference2018 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2018
Country/TerritorySpain
CityMadrid
Period1/10/185/10/18

All Science Journal Classification (ASJC) codes

  • Control and Systems Engineering
  • Software
  • Computer Vision and Pattern Recognition
  • Computer Science Applications

Fingerprint

Dive into the research topics of 'Generative Low-Shot Network Expansion'. Together they form a unique fingerprint.

Cite this