Generalization Analysis of Message Passing Neural Networks on Large Random Graphs

Sohir Maskey, Ron Levie, Yunseok Lee, Gitta Kutyniok

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Message passing neural networks (MPNN) have seen a steep rise in popularity since their introduction as generalizations of convolutional neural networks to graph structured data, and are now considered state-of-the-art tools for solving a large variety of graph-focused problems. We study the generalization error of MPNNs in graph classification and regression. We assume that graphs of different classes are sampled from different random graph models. We show that, when training a MPNN on a dataset sampled from such a distribution, the generalization gap increases in the complexity of the MPNN, and decreases, not only with respect to the number of training samples, but also with the average number of nodes in the graphs. This shows how a MPNN with high complexity can generalize from a small dataset of graphs, as long as the graphs are large. The generalization bound is derived from a uniform convergence result, that shows that any MPNN, applied on a graph, approximates the MPNN applied on the geometric model that the graph discretizes.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022
EditorsS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
ISBN (Electronic)9781713871088
StatePublished - 2022
Event36th Conference on Neural Information Processing Systems, NeurIPS 2022 - New Orleans, United States
Duration: 28 Nov 20229 Dec 2022

Publication series

NameAdvances in Neural Information Processing Systems
Volume35

Conference

Conference36th Conference on Neural Information Processing Systems, NeurIPS 2022
Country/TerritoryUnited States
CityNew Orleans
Period28/11/229/12/22

All Science Journal Classification (ASJC) codes

  • Computer Networks and Communications
  • Information Systems
  • Signal Processing

Fingerprint

Dive into the research topics of 'Generalization Analysis of Message Passing Neural Networks on Large Random Graphs'. Together they form a unique fingerprint.

Cite this