Fungal symbiont transmitted by free-living mice promotes type 2 immunity

Yun Liao, Iris H. Gao, Takato Kusakabe, Woan Yu Lin, Alexander Grier, Xiangyu Pan, Olga Morzhanaeva, Terrance P. Shea, Hiroshi Yano, Danielle Karo-Atar, Kaitlin A. Olsen, Ji Hoon Oh, Kurt J. Vandegrift, Irah L. King, Christina A. Cuomo, David Artis, Barbara Rehermann, Neil Lipman, Iliyan D. Iliev

Research output: Contribution to journalArticlepeer-review

Abstract

The gut mycobiota is crucial for intestinal homeostasis and immune function1. Yet its variability and inconsistent fungal colonization of laboratory mice hinders the study of the evolutionary and immune processes that underpin commensalism2,3. Here, we show that Kazachstania pintolopesii is a fungal commensal in wild urban and rural mice, with an exceptional ability to colonize the mouse gastrointestinal tract and dominate the gut mycobiome. Kazachstania pintolopesii colonization occurs in a bacteria-independent manner, results in enhanced colonization resistance to other fungi and is shielded from host immune surveillance, allowing commensal presence. Following changes in the mucosal environment, K. pintolopesii colonization triggers a type 2 immune response in mice and induces gastrointestinal eosinophilia. Mechanistically, we determined that K. pintolopesii activates type 2 immunity via the induction of epithelial IL-33 and downstream IL-33–ST2 signalling during mucus fluctuations. Kazachstania pintolopesii-induced type 2 immunity enhanced resistance to helminth infections or aggravated gastrointestinal allergy in a context-dependent manner. Our findings indicate that K. pintolopesii is a mouse commensal and serves as a valuable model organism for studying gut fungal commensalism and immunity in its native host. Its unnoticed presence in mouse facilities highlights the need to evaluate its influence on experimental outcomes and phenotypes.

Original languageAmerican English
Article numbere0287821
Pages (from-to)697-704
Number of pages8
JournalNature
Volume636
Issue number8043
DOIs
StatePublished - 19 Dec 2024
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • General

Cite this