Functional modeling of electrochemical whole-cell biosensors

Hadar Ben-Yoav, Alva Biran, Marek Sternheim, Shimshon Belkin, Amihay Freeman, Yosi Shacham-Diamand

Research output: Contribution to journalArticlepeer-review

Abstract

The response modeling of whole-cell biochip represents the link between cellular biology and transducer output, allowing better system engineering. It provides the mathematical background for signal and noise modeling, performance prediction and data analysis. Here we describe an analytical model for whole-cell biosensors with electrochemical detection for single use, test and dispose applications. In this system the electrochemical signal is generated by the oxidation of the by-products of the reaction between an external substrate and the enzyme alkaline phosphatase. The enzyme expression can be either normal or enhanced due to the response of the biological cell to an external excitation. The electrochemical oxidation current is measured as a function of time. The model is based on the electrochemical reaction rate equations; an analytical solution is presented, compared to data and discussed.

Original languageAmerican English
Pages (from-to)479-485
Number of pages7
JournalSensors and Actuators, B: Chemical
Volume181
DOIs
StatePublished - 25 Mar 2013

Keywords

  • Biochips
  • Bioelectrochemistry
  • Michaelis-Menten kinetics
  • Modeling
  • Whole-cell biosensors

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Instrumentation
  • Condensed Matter Physics
  • Surfaces, Coatings and Films
  • Metals and Alloys
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Functional modeling of electrochemical whole-cell biosensors'. Together they form a unique fingerprint.

Cite this