TY - GEN
T1 - Functional encryption for randomized functionalities in the private-key setting from minimal assumptions
AU - Komargodski, Ilan
AU - Segev, Gil
AU - Yogev, Eylon
N1 - Publisher Copyright: © International Association for Cryptologic Research 2015.
PY - 2015
Y1 - 2015
N2 - We present a construction of a private-key functional encryption scheme for any family of randomized functionalities based on any such scheme for deterministic functionalities that is sufficiently expressive. Instantiating our construction with existing schemes for deterministic functionalities, we obtain schemes for any family of randomized functionalities based on a variety of assumptions (including the LWE assumption, simple assumptions on multilinear maps, and even the existence of any one-way function) offering various trade-offs between security and efficiency. Previously, Goyal, Jain, Koppula and Sahai [TCC, 2015] constructed a public-key functional encryption scheme for any family of randomized functionalities based on indistinguishability obfuscation. One of the key insights underlying our work is that, in the privatekey setting, a sufficiently expressive functional encryption scheme may be appropriately utilized for implementing proof techniques that were so far implemented based on obfuscation assumptions (such as the punctured programming technique of Sahai and Waters [STOC, 2014]). We view this as a contribution of independent interest that may be found useful in other settings as well.
AB - We present a construction of a private-key functional encryption scheme for any family of randomized functionalities based on any such scheme for deterministic functionalities that is sufficiently expressive. Instantiating our construction with existing schemes for deterministic functionalities, we obtain schemes for any family of randomized functionalities based on a variety of assumptions (including the LWE assumption, simple assumptions on multilinear maps, and even the existence of any one-way function) offering various trade-offs between security and efficiency. Previously, Goyal, Jain, Koppula and Sahai [TCC, 2015] constructed a public-key functional encryption scheme for any family of randomized functionalities based on indistinguishability obfuscation. One of the key insights underlying our work is that, in the privatekey setting, a sufficiently expressive functional encryption scheme may be appropriately utilized for implementing proof techniques that were so far implemented based on obfuscation assumptions (such as the punctured programming technique of Sahai and Waters [STOC, 2014]). We view this as a contribution of independent interest that may be found useful in other settings as well.
UR - http://www.scopus.com/inward/record.url?scp=84924385968&partnerID=8YFLogxK
U2 - https://doi.org/10.1007/978-3-662-46497-7_14
DO - https://doi.org/10.1007/978-3-662-46497-7_14
M3 - منشور من مؤتمر
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 352
EP - 377
BT - Theory of Cryptography - 12th Theory of Cryptography Conference, TCC 2015, Proceedings
A2 - Dodis, Yevgeniy
A2 - Nielsen, Jesper Buus
PB - Springer Verlag
T2 - 12th Theory of Cryptography Conference, TCC 2015
Y2 - 23 March 2015 through 25 March 2015
ER -