TY - GEN
T1 - Fully dynamic almost-maximal matching
T2 - 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018
AU - Charikar, Moses
AU - Solomon, Shay
N1 - Publisher Copyright: © Moses Charikar and Shay Solomon;.
PY - 2018/7/1
Y1 - 2018/7/1
N2 - The state-of-the-art algorithm for maintaining an approximate maximum matching in fully dynamic graphs has a polynomial worst-case update time, even for poor approximation guarantees. Bhattacharya, Henzinger and Nanongkai showed how to maintain a constant approximation to the minimum vertex cover, and thus also a constant-factor estimate of the maximum matching size, with polylogarithmic worst-case update time. Later (in SODA'17 Proc.) they improved the approximation to 2 + . Nevertheless, the fundamental problem of maintaining an approximate matching with sub-polynomial worst-case time bounds remained open. We present a randomized algorithm for maintaining an almost-maximal matching in fully dynamic graphs with polylogarithmic worst-case update time. Such a matching provides (2 + )- approximations for both maximum matching and minimum vertex cover, for any > 0. The worst-case update time of our algorithm, O(poly(log n,− 1)), holds deterministically, while the almost-maximality guarantee holds with high probability. Our result was done independently of the (2 + )-approximation result of Bhattacharya et al., thus settling the aforementioned problem on dynamic matchings and providing essentially the best possible approximation guarantee for dynamic vertex cover (assuming the unique games conjecture). To prove this result, we exploit a connection between the standard oblivious adversarial model, which can be viewed as inherently “online”, and an “o ine” model where some (limited) information on the future can be revealed e ciently upon demand. Our randomized algorithm is derived from a deterministic algorithm in this o ine model. This approach gives an elegant way to analyze randomized dynamic algorithms, and is of independent interest.
AB - The state-of-the-art algorithm for maintaining an approximate maximum matching in fully dynamic graphs has a polynomial worst-case update time, even for poor approximation guarantees. Bhattacharya, Henzinger and Nanongkai showed how to maintain a constant approximation to the minimum vertex cover, and thus also a constant-factor estimate of the maximum matching size, with polylogarithmic worst-case update time. Later (in SODA'17 Proc.) they improved the approximation to 2 + . Nevertheless, the fundamental problem of maintaining an approximate matching with sub-polynomial worst-case time bounds remained open. We present a randomized algorithm for maintaining an almost-maximal matching in fully dynamic graphs with polylogarithmic worst-case update time. Such a matching provides (2 + )- approximations for both maximum matching and minimum vertex cover, for any > 0. The worst-case update time of our algorithm, O(poly(log n,− 1)), holds deterministically, while the almost-maximality guarantee holds with high probability. Our result was done independently of the (2 + )-approximation result of Bhattacharya et al., thus settling the aforementioned problem on dynamic matchings and providing essentially the best possible approximation guarantee for dynamic vertex cover (assuming the unique games conjecture). To prove this result, we exploit a connection between the standard oblivious adversarial model, which can be viewed as inherently “online”, and an “o ine” model where some (limited) information on the future can be revealed e ciently upon demand. Our randomized algorithm is derived from a deterministic algorithm in this o ine model. This approach gives an elegant way to analyze randomized dynamic algorithms, and is of independent interest.
KW - Dynamic graph algorithms
KW - Maximum matching
KW - Worst-case bounds
UR - http://www.scopus.com/inward/record.url?scp=85049771431&partnerID=8YFLogxK
U2 - https://doi.org/10.4230/LIPIcs.ICALP.2018.33
DO - https://doi.org/10.4230/LIPIcs.ICALP.2018.33
M3 - منشور من مؤتمر
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - 45th International Colloquium on Automata, Languages, and Programming, ICALP 2018
A2 - Kaklamanis, Christos
A2 - Marx, Daniel
A2 - Chatzigiannakis, Ioannis
A2 - Sannella, Donald
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
Y2 - 9 July 2018 through 13 July 2018
ER -