Abstract
A (Formula presented.) -tree is full if each of its limit levels omits no more than one potential branch. Kunen asked whether a full (Formula presented.) -Souslin tree may consistently exist. Shelah gave an affirmative answer of height a strong limit Mahlo cardinal (Formula presented.). Here, it is shown that these trees may consistently exist at small cardinals. Indeed, there can be (Formula presented.) many full (Formula presented.) -trees such that the product of any countably many of them is an (Formula presented.) -Souslin tree.
Original language | English |
---|---|
Article number | e12957 |
Journal | Journal of the London Mathematical Society |
Volume | 110 |
Issue number | 1 |
DOIs | |
State | Published - 1 Jul 2024 |
All Science Journal Classification (ASJC) codes
- General Mathematics