Abstract
We develop a framework for extracting a concise representation of the shape information available from diffuse shading in a small image patch. This produces a mid-level scene descriptor, comprised of local shape distributions that are inferred separately at every image patch across multiple scales. The framework is based on a quadratic representation of local shape that, in the absence of noise, has guarantees on recovering accurate local shape and lighting. And when noise is present, the inferred local shape distributions provide useful shape information without over-committing to any particular image explanation. These local shape distributions naturally encode the fact that some smooth diffuse regions are more informative than others, and they enable efficient and robust reconstruction of object-scale shape. Experimental results show that this approach to surface reconstruction compares well against the state-of-art on both synthetic images and captured photographs.
Original language | English |
---|---|
Article number | 6866216 |
Pages (from-to) | 67-79 |
Number of pages | 13 |
Journal | IEEE Transactions on Pattern Analysis and Machine Intelligence |
Volume | 37 |
Issue number | 1 |
Early online date | 25 Jul 2014 |
DOIs | |
State | Published - Jan 2015 |
All Science Journal Classification (ASJC) codes
- Software
- Computer Vision and Pattern Recognition
- Computational Theory and Mathematics
- Artificial Intelligence
- Applied Mathematics