Abstract
Active field theories, such as the paradigmatic model known as ‘active model B+’, are simple yet very powerful tools for describing phenomena such as motility-induced phase separation. No comparable theory has been derived yet for the underdamped case. In this work, we introduce active model I+, an extension of active model B+ to particles with inertia. The governing equations of active model I+ are systematically derived from the microscopic Langevin equations. We show that, for underdamped active particles, thermodynamic and mechanical definitions of the velocity field no longer coincide and that the density-dependent swimming speed plays the role of an effective viscosity. Moreover, active model I+ contains an analog of the Schrödinger equation in Madelung form as a limiting case, allowing one to find analoga of the quantum-mechanical tunnel effect and of fuzzy dark matter in active fluids. We investigate the active tunnel effect analytically and via numerical continuation.
Original language | English |
---|---|
Article number | 1302 |
Journal | Nature Communications |
Volume | 14 |
Issue number | 1 |
DOIs | |
State | Published - Dec 2023 |
All Science Journal Classification (ASJC) codes
- General Chemistry
- General Biochemistry,Genetics and Molecular Biology
- General Physics and Astronomy