Abstract
Perforation shots excite guided waves that propagate in a low-velocity unconventional shale reservoir. They have a frequency content of up to 700 Hz and are dispersive. We have analyzed horizontal crosswell perforation shots recorded by a distributed acoustic sensing (DAS) array. As guided waves propagate through a previously stimulated area, we observe a dramatic influence on the guided SH waves in the form of delayed arrival times, scattering, phase incoherency, and loss of amplitude and frequency. The leaky compressional waves undergo a gradual slowdown. Using a simple geometric analysis of the spatial locations of the distortions in the direct arrivals of the guided SH waves, we can estimate the half-lengths of the induced fractures, which range from 50% to 75% of the distance between the perforated and monitoring wells. Furthermore, we find that the propagation disturbances originate from the middle of the stimulated area. Other diffracted signals, notably from frac plugs, are clearly visible in the data. We report the first large-scale use of DAS records of guided waves. Their potential for high-resolution imaging and inversion of subsurface properties before and after hydraulic stimulation opens new possibilities for the use of seismology in optimizing production from unconventional reservoirs.
Original language | English |
---|---|
Pages (from-to) | M85-M95 |
Journal | Geophysics |
Volume | 85 |
Issue number | 5 |
DOIs | |
State | Published - 1 Sep 2020 |
Externally published | Yes |
Keywords
- crosswell
- fiber-optic sensors
- fractures
- horizontal wells
- unconventional
All Science Journal Classification (ASJC) codes
- Geochemistry and Petrology