Abstract
Bodlaender et al.'s [6] cross-composition technique is a popular method for excluding polynomialsize problem kernels for NP-hard parameterized problems. We present a new technique exploiting triangle-based fractal structures for extending the range of applicability of cross-compositions. Our technique makes it possible to prove new no-polynomial-kernel results for a number of problems dealing with length-bounded cuts. Roughly speaking, our new technique combines the advantages of serial and parallel composition. In particular, answering an open question of Golovach and Thilikos [13], we show that, unless NP ⊆ coNP / poly, the NP-hard Length- Bounded Edge-Cut problem (delete at most k edges such that the resulting graph has no s-t path of length shorter than ℓ) parameterized by the combination of k and ℓ has no polynomialsize problem kernel. Our framework applies to planar as well as directed variants of the basic problems and also applies to both edge and vertex deletion problems.
Original language | English |
---|---|
Journal | Leibniz International Proceedings in Informatics, LIPIcs |
DOIs | |
State | Published - 1 Aug 2016 |
Event | 43rd International Colloquium on Automata, Languages, and Programming, ICALP 2016 - Rome, Italy Duration: 12 Jul 2016 → 15 Jul 2016 |
Keywords
- Cross-compositions
- Graph modification problems
- Interdiction problems
- Lower bounds
- Parameterized complexity
- Polynomial-time data reduction
All Science Journal Classification (ASJC) codes
- Software