Abstract
Diastereoisomerically pure (dr > 99:1) and enantiomerically enriched (er up to 98:2) substituted propargyl diols possessing a tertiary hydroxyl group were synthesized in a single-pot operation from simple acylsilanes through a combined catalytic enantioselective alkynylation of acylsilanes, followed by an allenyl-Zn-Brook rearrangement and Zn-ene-allene (or Zn-yne-allene) cyclization reaction. Two remarkable features of these reactions are the near complete transfer of chirality in the allenyl-Zn-Brook rearrangement and the highly organized six-membered transition state of the Zn-ene-allene carbocyclization found by DFT calculations. In this process, three new bonds and two new stereogenic centers are created in a single-pot operation in excellent diastereo- and enantiomeric ratios. DFT calculations show that the allenyl-Zn-Brook rearrangement occurs in preference to the classic [1,2]-Zn-Brook rearrangement owing to its significantly lower activation barrier.
Original language | English |
---|---|
Pages (from-to) | 12122-12135 |
Number of pages | 14 |
Journal | Journal of Organic Chemistry |
Volume | 79 |
Issue number | 24 |
DOIs | |
State | Published - 19 Dec 2014 |
All Science Journal Classification (ASJC) codes
- Organic Chemistry