TY - JOUR
T1 - Following Metabolism in Living Microorganisms by Hyperpolarized H-1 NMR
AU - Dzien, Piotr
AU - Fages, Anne
AU - Jona, Ghil
AU - Brindle, Kevin M.
AU - Schwaiger, Markus
AU - Frydman, Lucio
N1 - Israel Science Foundation [795/13]; Kimmel Institute for Magnetic Resonance (Weizmann Institute); DIP Project [710907]; COST action [TD-1113]; Cancer Research UK [17242]; CRUK-EPSRC Imaging Centre in Cambridge and Manchester [16465]; European Union [294582]; ERC Grant MUMI; Deutsche Forschungsgemeinschaft (DFG) [SFB 824]; French ministry of foreign affairs
PY - 2016/9/21
Y1 - 2016/9/21
N2 - Dissolution dynamic nuclear polarization (dDNP) is used to enhance the sensitivity of nuclear magnetic resonance (NMR), enabling monitoring of metabolism and specific enzymatic reactions in vivo. dDNP involves rapid sample dissolution and transfer to 4 spectrometer/scanner for subsequent signal detection. So far, most biologically oriented dDNP studies have relied on hyperpolarizing long-lived nuclear spin species such as C-13 in small molecules. While advantages could also arise from observing hyperpolarized H-1, short relaxation times limit the utility of prepolarizing this sensitive but fast relaxing nucleus. Recently, it has been reported that H-1 NMR peaks in solution-phase experiments could be hyperpolarized by spontaneous magnetization transfers from bound C-13 nuclei following dDNP. Thia work demonstrates the potential of this sensitivity-enhancing approach to probe the enzymatic process that could not be suitably resolved by C-13 dDNP MR Here we measured, in microorganism, the action of pyruvate decarboxylase (PDC) and pyruvate formate lyase (PFL)- enzymes that catalyze the decarboxylation of pyruvate to form acetaldehyde and formate, respectively. While C-13 NMR did not possess the resolution to distinguish the starting pyruvate precursor from the carbonyl resonances in the resulting products, these processes could be monitored by H-1 NMR. at 50 MHz. These observations were possible in both yeast and bacteria in minute-long measurements where the hyperpolarized C-13 enhanced, via C-13 -> H-1 cross-relaxation, the signals of protons binding to the C-13 over the course of enzymatic reactions. In addition to these spontaneous heteronuclear enhancement experiments, single-shot acquisitions based on J-driven C-13 -> H-1 polarization transfers were also carried out. These resulted in higher signal enhancements of the H-1 resonances but were not suitable for multishot kinetic studies. The Potential of these H-1-based approaches for measurements in vivo is brie
AB - Dissolution dynamic nuclear polarization (dDNP) is used to enhance the sensitivity of nuclear magnetic resonance (NMR), enabling monitoring of metabolism and specific enzymatic reactions in vivo. dDNP involves rapid sample dissolution and transfer to 4 spectrometer/scanner for subsequent signal detection. So far, most biologically oriented dDNP studies have relied on hyperpolarizing long-lived nuclear spin species such as C-13 in small molecules. While advantages could also arise from observing hyperpolarized H-1, short relaxation times limit the utility of prepolarizing this sensitive but fast relaxing nucleus. Recently, it has been reported that H-1 NMR peaks in solution-phase experiments could be hyperpolarized by spontaneous magnetization transfers from bound C-13 nuclei following dDNP. Thia work demonstrates the potential of this sensitivity-enhancing approach to probe the enzymatic process that could not be suitably resolved by C-13 dDNP MR Here we measured, in microorganism, the action of pyruvate decarboxylase (PDC) and pyruvate formate lyase (PFL)- enzymes that catalyze the decarboxylation of pyruvate to form acetaldehyde and formate, respectively. While C-13 NMR did not possess the resolution to distinguish the starting pyruvate precursor from the carbonyl resonances in the resulting products, these processes could be monitored by H-1 NMR. at 50 MHz. These observations were possible in both yeast and bacteria in minute-long measurements where the hyperpolarized C-13 enhanced, via C-13 -> H-1 cross-relaxation, the signals of protons binding to the C-13 over the course of enzymatic reactions. In addition to these spontaneous heteronuclear enhancement experiments, single-shot acquisitions based on J-driven C-13 -> H-1 polarization transfers were also carried out. These resulted in higher signal enhancements of the H-1 resonances but were not suitable for multishot kinetic studies. The Potential of these H-1-based approaches for measurements in vivo is brie
U2 - https://doi.org/10.1021/jacs.6b07483
DO - https://doi.org/10.1021/jacs.6b07483
M3 - مقالة
SN - 0002-7863
VL - 138
SP - 12278
EP - 12286
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 37
ER -