Abstract
We predict the existence of a Floquet topological insulator in three-dimensional two-band systems, the Floquet Hopf insulator, which possesses two distinct topological invariants. One is the Hopf Z invariant, a linking number characterizing the (nondriven) Hopf topological insulator. The second invariant is an intrinsically Floquet Z2 invariant, and represents a condensed matter realization of the topology underlying the Witten anomaly in particle physics. Both invariants arise from topological defects in the system's time evolution, subject to a process in which defects at different quasienergies exchange even amounts of topological charge. Their contrasting classifications lead to a measurable physical consequence, namely, an unusual bulk-boundary correspondence where gapless edge modes are topologically protected, but may exist at either 0 or π quasienergy. Our results represent a phase of matter beyond the conventional classification of Floquet topological insulators.
Original language | English |
---|---|
Article number | 266803 |
Journal | Physical Review Letters |
Volume | 123 |
Issue number | 26 |
DOIs | |
State | Published - 30 Dec 2019 |
All Science Journal Classification (ASJC) codes
- General Physics and Astronomy