Finite-temperature violation of the anomalous transverse Wiedemann-Franz law

Liangcai Xu, Xiaokang Li, Xiufang Lu, Clement Collignon, Huixia Fu, Jahyun Koo, Benoit Fauque, Binghai Yan, Zengwei Zhu, Kamran Behnia

Research output: Contribution to journalArticlepeer-review

Abstract

The Wiedemann-Franz (WF) law has been tested in numerous solids, but the extent of its relevance to the anomalous transverse transport and the topological nature of the wave function, remains an open question. Here, we present a study of anomalous transverse response in the noncollinear antiferromagnet Mn3Ge extended from room temperature down to sub-kelvin temperature and find that the anomalous Lorenz ratio remains close to the Sommerfeld value up to 100 K but not above. The finite-temperature violation of the WF correlation is caused by a mismatch between the thermal and electrical summations of the Berry curvature and not by inelastic scattering. This interpretation is backed by our theoretical calculations, which reveals a competition between the temperature and the Berry curvature distribution. The data accuracy is supported by verifying the anomalous Bridgman relation. The anomalous Lorenz ratio is thus an extremely sensitive probe of the Berry spectrum of a solid.

Original languageEnglish
Article numbereaaz3522
Number of pages8
JournalScience Advances
Volume6
Issue number17
DOIs
StatePublished - 24 Apr 2020

All Science Journal Classification (ASJC) codes

  • General

Fingerprint

Dive into the research topics of 'Finite-temperature violation of the anomalous transverse Wiedemann-Franz law'. Together they form a unique fingerprint.

Cite this