Abstract
Two-timescale Stochastic Approximation (SA) algorithms are widely used in Reinforcement Learning (RL). Their iterates have two parts that are updated using distinct stepsizes. In this work, we develop a novel recipe for their finite sample analysis. Using this, we provide a concentration bound, which is the first such result for a two-timescale SA. The type of bound we obtain is known as “lock-in probability”. We also introduce a new projection scheme, in which the time between successive projections increases exponentially. This scheme allows one to elegantly transform a lock-in probability into a convergence rate result for projected two-timescale SA. From this latter result, we then extract key insights on stepsize selection. As an application, we finally obtain convergence rates for the projected two-timescale RL algorithms GTD(0), GTD2, and TDC.
Original language | English |
---|---|
Pages (from-to) | 1199-1233 |
Number of pages | 35 |
Journal | Proceedings of Machine Learning Research |
Volume | 75 |
State | Published - 2018 |
Event | 31st Annual Conference on Learning Theory, COLT 2018 - Stockholm, Sweden Duration: 6 Jul 2018 → 9 Jul 2018 |
All Science Journal Classification (ASJC) codes
- Software
- Artificial Intelligence
- Control and Systems Engineering
- Statistics and Probability