TY - GEN
T1 - Fine Grained Analysis of High Dimensional Random Walks
AU - Gotlib, Roy
AU - Kaufman, Tali
N1 - Publisher Copyright: © 2023 Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing. All rights reserved.
PY - 2023/9
Y1 - 2023/9
N2 - One of the most important properties of high dimensional expanders is that high dimensional random walks converge rapidly. This property has proven to be extremely useful in a variety of fields in the theory of computer science from agreement testing to sampling, coding theory and more. In this paper we present a state of the art result in a line of works analyzing the convergence of high dimensional random walks [13, 10, 15, 1], by presenting a structured version of the result of [1]. While previous works examined the expansion in the viewpoint of the worst possible eigenvalue, in this work we relate the expansion of a function to the entire spectrum of the random walk operator using the structure of the function; We call such a theorem a Fine Grained High Order Random Walk Theorem. In sufficiently structured cases the fine grained result that we present here can be much better than the worst case while in the worst case our result is equivalent to [1]. In order to prove the Fine Grained High Order Random Walk Theorem we introduce a way to bootstrap the expansion of random walks on the vertices of a complex into a fine grained understanding of higher order random walks, provided that the expansion is good enough. In addition, our single bootstrapping theorem can simultaneously yield our Fine Grained High Order Random Walk Theorem as well as the well known Trickling down Theorem. Prior to this work, High order Random walks theorems and Tricking down Theorem have been obtained from different proof methods.
AB - One of the most important properties of high dimensional expanders is that high dimensional random walks converge rapidly. This property has proven to be extremely useful in a variety of fields in the theory of computer science from agreement testing to sampling, coding theory and more. In this paper we present a state of the art result in a line of works analyzing the convergence of high dimensional random walks [13, 10, 15, 1], by presenting a structured version of the result of [1]. While previous works examined the expansion in the viewpoint of the worst possible eigenvalue, in this work we relate the expansion of a function to the entire spectrum of the random walk operator using the structure of the function; We call such a theorem a Fine Grained High Order Random Walk Theorem. In sufficiently structured cases the fine grained result that we present here can be much better than the worst case while in the worst case our result is equivalent to [1]. In order to prove the Fine Grained High Order Random Walk Theorem we introduce a way to bootstrap the expansion of random walks on the vertices of a complex into a fine grained understanding of higher order random walks, provided that the expansion is good enough. In addition, our single bootstrapping theorem can simultaneously yield our Fine Grained High Order Random Walk Theorem as well as the well known Trickling down Theorem. Prior to this work, High order Random walks theorems and Tricking down Theorem have been obtained from different proof methods.
KW - High Dimensional Expanders
KW - High Dimensional Random Walks
KW - Local Spectral Expansion
KW - Local to Global
KW - Trickling Down
UR - http://www.scopus.com/inward/record.url?scp=85172017813&partnerID=8YFLogxK
U2 - https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.49
DO - https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.49
M3 - منشور من مؤتمر
T3 - Leibniz International Proceedings in Informatics, LIPIcs
BT - Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2023
A2 - Megow, Nicole
A2 - Smith, Adam
PB - Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing
T2 - 26th International Conference on Approximation Algorithms for Combinatorial Optimization Problems, APPROX 2023 and the 27th International Conference on Randomization and Computation, RANDOM 2023
Y2 - 11 September 2023 through 13 September 2023
ER -