Abstract
Two tautomeric forms of a heterocyclic monomer – the preferable M0 and the one at higher energy, M*, can form three different kinds of hydrogen-bonded dimers: M0M0, M0M* and M*M*. The lowest-energy dimer M0M0 and the highest one M*M* are transformed into each other by double proton transfer (DPT). By the corresponding concerted process, the mixed complex M0M* is converted to the equivalent isomer M*M0. It cannot return to the low-energy form M0M0 without breaking the hydrogen bonds. A quantum-chemical study of dimers of tautomeric monomers (7-azaindole, 1-azacarbazole, formamide) and non-symmetric complexes including the DNA adenine-thymine pair shows increasing hydrogen bond stabilization with increasing energy of the dimer or complex, respectively. The least stable dimer M*M* has a small barrier for reverse DPT (< 2 kcal mol−1), rendering an experimental observation difficult. This should not be the case for the mixed complex M0M* which is kinetically stable (▵E≠ > 8 kcal mol−1). Hence the mixed dimer is a perspective candidate for the experimental verification of hydrogen bond-stabilization in less stable tautomers. Theory predicts softening of the OH/NH bonds and a strong down shift of the OH/NH frequencies by > 200 cm−1 in the less stable complexes.
Original language | English |
---|---|
Pages (from-to) | 195-200 |
Number of pages | 6 |
Journal | ChemistrySelect |
Volume | 1 |
Issue number | 2 |
DOIs | |
State | Published - Feb 2016 |
Keywords
- Double Proton Transfer
- Hydrogen Bond
- Strong Hydrogen Bonding
- Tautomers
All Science Journal Classification (ASJC) codes
- General Chemistry