Filtered baryogenesis

Michael J. Baker, Moritz Breitbach, Joachim Kopp, Lukas Mittnacht, Yotam Soreq

Research output: Contribution to journalArticlepeer-review

Abstract

We propose a new mechanism to simultaneously explain the observed dark matter abundance and the baryon asymmetry of the Universe. The mechanism is based on the Filtered Dark Matter scenario, where dark matter particles acquire a large mass during a first-order phase transition. This implies that only a small fraction of them are energetic enough to enter the advancing true vacuum bubbles and survive until today, while the rest are reflected and annihilate away quickly. We supplement this scenario with a CP-violating interaction, which creates a chiral asymmetry in the population of dark matter particles. In the false vacuum phase, a portal interaction quickly converts the dark sector chiral asymmetry into a Standard Model lepton asymmetry. The lepton asymmetry is then partially converted to a baryon asymmetry by standard electroweak sphaleron processes. We discuss the dependence of the generated asymmetry on the parameters of the model for two different portal interactions and demonstrate successful baryogenesis for both. For one of the portals, it is also possible to simultaneously explain the observed dark matter abundance, over many orders of magnitude in the dark matter mass.

Original languageEnglish
Article number10
JournalJournal of High Energy Physics
Volume2022
Issue number8
DOIs
StatePublished - Aug 2022

Keywords

  • Baryo-and Leptogenesis
  • Particle Nature of Dark Matter

All Science Journal Classification (ASJC) codes

  • Nuclear and High Energy Physics

Fingerprint

Dive into the research topics of 'Filtered baryogenesis'. Together they form a unique fingerprint.

Cite this