Abstract
Energy/enthalpy of intermolecular hydrogen bonds (H-bonds) in crystals have been calcu-lated in many papers. Most of the theoretical works used non-periodic models. Their applicability for describing intermolecular H-bonds in solids is not obvious since the crystal environment can strongly change H-bond geometry and energy in comparison with non-periodic models. Periodic DFT computations provide a reasonable description of a number of relevant properties of molecular crystals. However, these methods are quite cumbersome and time-consuming compared to non-periodic calculations. Here, we present a fast quantum approach for estimating the energy/enthalpy of intermolecular H-bonds in crystals. It has been tested on a family of crystalline peroxosolvates in which the H···O bond set fills evenly (i.e., without significant gaps) the range of H···O distances from ~1.5 to ~2.1 Å typical for strong, moderate, and weak H-bonds. Four of these two-component crystals (peroxosolvates of macrocyclic ethers and creatine) were obtained and structurally characterized for the first time. A critical comparison of the approaches for estimating the energy of intermolecular H-bonds in organic crystals is carried out, and various sources of errors are clarified.
Original language | English |
---|---|
Article number | 4082 |
Journal | Molecules |
Volume | 27 |
Issue number | 13 |
DOIs | |
State | Published - 1 Jul 2022 |
Keywords
- B3LYP vs. PBE-D3
- amino acid
- bifurcated H-bonds
- macrocyclic ether
- multicomponent crystals
- periodic DFT computations
- peroxosolvates
All Science Journal Classification (ASJC) codes
- Analytical Chemistry
- Chemistry (miscellaneous)
- Molecular Medicine
- Pharmaceutical Science
- Drug Discovery
- Physical and Theoretical Chemistry
- Organic Chemistry