Fair and Truthful Mechanisms for Dichotomous Valuations

Moshe Babaioff, Tomer Ezra, Uriel Feige

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review


We consider the problem of allocating a set on indivisible items to players with private preferences in an efficient and fair way. We focus on valuations that have dichotomous marginals, in which the added value of any item to a set is either 0 or 1, and aim to design truthful allocation mechanisms (without money) that maximize welfare and are fair. For the case that players have submodular valuations with dichotomous marginals, we design such a deterministic truthful allocation mechanism. The allocation output by our mechanism is Lorenz dominating, and consequently satisfies many desired fairness properties, such as being envy-free up to any item (EFX), and maximizing the Nash Social Welfare (NSW). We then show that our mechanism with random priorities is envy-free ex-ante, while having all the above properties ex-post. Furthermore, we present several impossibility results precluding similar results for the larger class of XOS valuations.

Original languageEnglish
Title of host publication35th AAAI Conference on Artificial Intelligence, AAAI 2021
PublisherAssociation for the Advancement of Artificial Intelligence
Number of pages8
ISBN (Electronic)9781713835974
StatePublished - 2021
Event35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
Duration: 2 Feb 20219 Feb 2021

Publication series

Name35th AAAI Conference on Artificial Intelligence, AAAI 2021


Conference35th AAAI Conference on Artificial Intelligence, AAAI 2021
CityVirtual, Online

All Science Journal Classification (ASJC) codes

  • Artificial Intelligence

Cite this