Abstract
A facile and effective catalyst deposition process for carbon nanotube (CNT) array growth via chemical vapor deposition using a resistively heated thermal evaporation technique to sublimate FeCl3 onto the substrate is demonstrated. The catalytic activity of the sublimated FeCl3 catalyst precursor is shown to be comparable to the well-studied e-beam evaporated Fe catalyst, and the resulting vertically aligned CNTs (VA-CNTs) have a similar diameter, walls, and defects, as well as improved bulk electrical conductivity. In contrast to standard e-beam-deposited Fe, which yields base-growth CNTs, scanning and transmission electron microscopy and X-ray photoelectron spectroscopy characterizations reveal a tip-growth mechanism for the FeCl3-derived VA-CNT arrays/forests. The FeCl3-derived forests have a lower (∼1/3 less) longitudinal indentation modulus, but higher longitudinal electrical conductivity (greater than twice) than that of the e-beam Fe-grown CNT arrays. The sublimation process to grow high-quality VA-CNTs is a highly facile and scalable process (extensive substrate shape and size, and moderate vacuum and temperatures) that provides a new route to synthesizing aligned CNT forests for numerous applications.
Original language | English |
---|---|
Article number | 025001 |
Journal | Nano Futures |
Volume | 7 |
Issue number | 2 |
DOIs | |
State | Published - 1 Jun 2023 |
Keywords
- Carbon nanotubes synthesis
- carbon nanotube arrays
- electrical properties
- sublimation of ferric chloride
- vertically-aligned carbon nanotubes
All Science Journal Classification (ASJC) codes
- Bioengineering
- General Chemistry
- Atomic and Molecular Physics, and Optics
- Biomedical Engineering
- General Materials Science
- Electrical and Electronic Engineering