Abstract
Objectives Social media platforms such as Facebook are used by both radicals and the security services that keep them under surveillance. However, only a small percentage of radicals go on to become terrorists and there is a worrying lack of evidence as to what types of online behaviors may differentiate terrorists from non-violent radicals. Most of the research to date uses text-based analysis to identify “radicals” only. In this study we sought to identify new social-media level behavioral metrics upon which it is possible to differentiate terrorists from non-violent radicals. Methods: Drawing on an established theoretical framework, Social Learning Theory, this study used a matched case-control design to compare the Facebook activities and interactions of 48 Palestinian terrorists in the 100 days prior to their attack with a 2:1 control group. Conditional-likelihood logistic regression was used to identify precise estimates, and a series of binomial logistic regression models were used to identify how well the variables classified between the groups. Findings: Variables from each of the social learning domains of differential associations, definitions, differential reinforcement, and imitation were found to be significant predictors of being a terrorist compared to a nonviolent radical. Models including these factors had a relatively high classification rate, and significantly reduced error over base-rate classification. Conclusions Behavioral level metrics derived from social learning theory should be considered as metrics upon which it may be possible to differentiate between terrorists and non-violent radicals based on their social media profiles. These metrics may also serve to support textbased analysis and vice versa.
Original language | English |
---|---|
Article number | 106646 |
Pages (from-to) | 106646 |
Number of pages | 1 |
Journal | Computers in Human Behavior |
Volume | 116 |
DOIs | |
State | Published - Mar 2021 |
Keywords
- Case-control
- Internet
- Social-learning theory
- Social-media
- Terrorism
All Science Journal Classification (ASJC) codes
- Arts and Humanities (miscellaneous)
- Human-Computer Interaction
- Psychology(all)