Exposure to naphthalene and β-pinene-derived secondary organic aerosol induced divergent changes in transcript levels of BEAS-2B cells

Michal Pardo, Svenja Offer, Elena Hartner, Sebastiano Di Bucchianico, Christoph Bisig, Stefanie Bauer, Jana Pantzke, Elias J. Zimmermann, Xin Cao, Stephanie Binder, Evelyn Kuhn, Anja Huber, Seongho Jeong, Uwe Ka, Eric Schneider, Arunas Mesceriakovas, Jan Bendl, Ramona Brejcha, Angela Buchholz, Daniela GatThorsten Hohaus, Narges Rastak, Erwin Karg, Gert Jakobi, Markus Kalberer, Tamara Kanashova, Yue Hu, Christoph Ogris, Annalisa Marsico, Fabian Theis, Tali Shalit, Thomas Gro, Christopher P. Rueger, Sebastian Oeder, Juergen Orasche, Andreas Paul, Till Ziehm, Zhi-Hui Zhang, Thomas Adam, Olli Sippula, Martin Sklorz, Juergen Schnelle-Kreis, Hendryk Czech, Astrid Kiendler-Scharr, Ralf Zimmermann, Yinon Rudich, Uwe Käfer, Thomas Gröger, Christopher P. Rüger, Jürgen Orasche, Jürgen Schnelle-Kreis

Research output: Contribution to journalArticlepeer-review

Abstract

The health effects of exposure to secondary organic aerosols (SOAs) are still limited. Here, we investigated and compared the toxicities of soot particles (SP) coated with β-pinene SOA (SOAβPin-SP) and SP coated with naphthalene SOA (SOANap-SP) in a human bronchial epithelial cell line (BEAS-2B) residing at the air–liquid interface. SOAβPin-SP mostly contained oxygenated aliphatic compounds from β-pinene photooxidation, whereas SOANap-SP contained a significant fraction of oxygenated aromatic products under similar conditions. Following exposure, genome-wide transcriptome responses showed an Nrf2 oxidative stress response, particularly for SOANap-SP. Other signaling pathways, such as redox signaling, inflammatory signaling, and the involvement of matrix metalloproteinase, were identified to have a stronger impact following exposure to SOANap-SP. SOANap-SP also induced a stronger genotoxicity response than that of SOAβPin-SP. This study elucidated the mechanisms that govern SOA toxicity and showed that, compared to SOAs derived from a typical biogenic precursor, SOAs from a typical anthropogenic precursor have higher toxicological potency, which was accompanied with the activation of varied cellular mechanisms, such as aryl hydrocarbon receptor. This can be attributed to the difference in chemical composition; specifically, the aromatic compounds in the naphthalene-derived SOA had higher cytotoxic potential than that of the β-pinene-derived SOA.
Original languageEnglish
Article number107366
Number of pages14
JournalEnvironment International
Volume166
Early online date21 Jun 2022
DOIs
StatePublished - 1 Aug 2022

Keywords

  • Cytotoxicity
  • Health effects
  • Particulate matter
  • RNA sequencing
  • Signaling pathway
  • Soot particles

All Science Journal Classification (ASJC) codes

  • General Environmental Science

Fingerprint

Dive into the research topics of 'Exposure to naphthalene and β-pinene-derived secondary organic aerosol induced divergent changes in transcript levels of BEAS-2B cells'. Together they form a unique fingerprint.

Cite this