@inproceedings{a71f7b998e2a45bf8eca12445e1bb2a7,
title = "Exponentially Improving the Complexity of Simulating the Weisfeiler-Lehman Test with Graph Neural Networks",
abstract = "Recent work shows that the expressive power of Graph Neural Networks (GNNs) in distinguishing non-isomorphic graphs is exactly the same as that of the Weisfeiler-Lehman (WL) graph test. In particular, they show that the WL test can be simulated by GNNs. However, those simulations involve neural networks for the “combine” function of size polynomial or even exponential in the number of graph nodes n, as well as feature vectors of length linear in n. We present an improved simulation of the WL test on GNNs with exponentially lower complexity. In particular, the neural network implementing the combine function in each node has only polylog(n) parameters, and the feature vectors exchanged by the nodes of GNN consists of only O(log n) bits. We also give logarithmic lower bounds for the feature vector length and the size of the neural networks, showing the (near)-optimality of our construction.",
author = "Anders Aamand and Chen, {Justin Y.} and Piotr Indyk and Shyam Narayanan and Ronitt Rubinfeld and Nicholas Schiefer and Sandeep Silwal and Tal Wagner",
note = "Publisher Copyright: {\textcopyright} 2022 Neural information processing systems foundation. All rights reserved.; 36th Conference on Neural Information Processing Systems, NeurIPS 2022 ; Conference date: 28-11-2022 Through 09-12-2022",
year = "2022",
language = "الإنجليزيّة",
series = "Advances in Neural Information Processing Systems",
publisher = "Neural information processing systems foundation",
editor = "S. Koyejo and S. Mohamed and A. Agarwal and D. Belgrave and K. Cho and A. Oh",
booktitle = "Advances in Neural Information Processing Systems 35 - 36th Conference on Neural Information Processing Systems, NeurIPS 2022",
address = "الولايات المتّحدة",
}