TY - GEN
T1 - Exponentially Faster Shortest Paths in the Congested Clique
AU - Dory, Michal
AU - Parter, Merav
N1 - Publisher Copyright: © 2020 ACM.
PY - 2020/7/31
Y1 - 2020/7/31
N2 - We present improved deterministic algorithms for approximating shortest paths in the Congested Cliqe model of distributed computing. We obtain poly(log log n)-round algorithms for the following problems in unweighted undirected n-vertex graphs: • (1 + ∈)-approximation of multi-source shortest paths (MSSP) from [EQUATION] sources. • (2 + ∈)-approximation of all pairs shortest paths (APSP). • (1+∈, β)-approximation of APSP where [EQUATION]. These bounds improve exponentially over the state-of-the-art polylogarithmic bounds due to [Censor-Hillel et al., PODC19]. It also provides the first nearly-additive bounds for the APSP problem in sub-polynomial time. Our approach is based on distinguishing between short and long distances based on some distance threshold [EQUATION] where [EQUATION]. Handling the long distances is done by devising a new algorithm for computing a sparse (1 + ∈, β) emulator with O(n log log n) edges. For the short distances, we provide distance-sensitive variants for the distance tool-kit of [Censor-Hillel et al., PODC19]. By exploiting the fact that this tool-kit should be applied only on local balls of radius t, their round complexities get improved from poly (log n) to poly(log n). Finally, our deterministic solutions for these problems are based on a derandomization scheme of a novel variant of the hitting set problem, which might be of independent interest.
AB - We present improved deterministic algorithms for approximating shortest paths in the Congested Cliqe model of distributed computing. We obtain poly(log log n)-round algorithms for the following problems in unweighted undirected n-vertex graphs: • (1 + ∈)-approximation of multi-source shortest paths (MSSP) from [EQUATION] sources. • (2 + ∈)-approximation of all pairs shortest paths (APSP). • (1+∈, β)-approximation of APSP where [EQUATION]. These bounds improve exponentially over the state-of-the-art polylogarithmic bounds due to [Censor-Hillel et al., PODC19]. It also provides the first nearly-additive bounds for the APSP problem in sub-polynomial time. Our approach is based on distinguishing between short and long distances based on some distance threshold [EQUATION] where [EQUATION]. Handling the long distances is done by devising a new algorithm for computing a sparse (1 + ∈, β) emulator with O(n log log n) edges. For the short distances, we provide distance-sensitive variants for the distance tool-kit of [Censor-Hillel et al., PODC19]. By exploiting the fact that this tool-kit should be applied only on local balls of radius t, their round complexities get improved from poly (log n) to poly(log n). Finally, our deterministic solutions for these problems are based on a derandomization scheme of a novel variant of the hitting set problem, which might be of independent interest.
KW - congested clique
KW - near-additive emulator
KW - shortest paths
UR - http://www.scopus.com/inward/record.url?scp=85090327828&partnerID=8YFLogxK
U2 - https://doi.org/10.1145/3382734.3405711
DO - https://doi.org/10.1145/3382734.3405711
M3 - Conference contribution
T3 - Proceedings of the Annual ACM Symposium on Principles of Distributed Computing
SP - 59
EP - 68
BT - PODC 2020 - Proceedings of the 39th Symposium on Principles of Distributed Computing
PB - Association for Computing Machinery
T2 - 39th Symposium on Principles of Distributed Computing, PODC 2020
Y2 - 3 August 2020 through 7 August 2020
ER -