TY - JOUR
T1 - Exploring the interplay between colorectal cancer subtypes genomic variants and cellular morphology
T2 - A deep-learning approach
AU - Hezi, Hadar
AU - Shats, Daniel
AU - Gurevich, Daniel
AU - Maruvka, Yosef E.
AU - Freiman, Moti
N1 - Publisher Copyright: © 2024 Hezi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2024/9
Y1 - 2024/9
N2 - Molecular subtypes of colorectal cancer (CRC) significantly influence treatment decisions. While convolutional neural networks (CNNs) have recently been introduced for automated CRC subtype identification using H&E stained histopathological images, the correlation between CRC subtype genomic variants and their corresponding cellular morphology expressed by their imaging phenotypes is yet to be fully explored. The goal of this study was to determine such correlations by incorporating genomic variants in CNN models for CRC subtype classification from H&E images. We utilized the publicly available TCGA-CRC-DX dataset, which comprises whole slide images from 360 CRC-diagnosed patients (260 for training and 100 for testing). This dataset also provides information on CRC subtype classifications and genomic variations. We trained CNN models for CRC subtype classification that account for potential correlation between genomic variations within CRC subtypes and their corresponding cellular morphology patterns. We assessed the interplay between CRC subtypes’ genomic variations and cellular morphology patterns by evaluating the CRC subtype classification accuracy of the different models in a stratified 5-fold cross-validation experimental setup using the area under the ROC curve (AUROC) and average precision (AP) as the performance metrics. The CNN models that account for potential correlation between genomic variations within CRC subtypes and their cellular morphology pattern achieved superior accuracy compared to the baseline CNN classification model that does not account for genomic variations when using either single-nucleotide-polymorphism (SNP) molecular features (AUROC: 0.824±0.02 vs. 0.761±0.04, p<0.05, AP: 0.652±0.06 vs. 0.58±0.08) or CpG-Island methylation phenotype (CIMP) molecular features (AUROC: 0.834±0.01 vs. 0.787±0.03, p<0.05, AP: 0.687±0.02 vs. 0.64±0.05). Combining the CNN models account for variations in CIMP and SNP further improved classification accuracy (AUROC: 0.847 ±0.01 vs. 0.787±0.03, p = 0.01, AP: 0.68±0.02 vs. 0.64±0.05). The improved accuracy of CNN models for CRC subtype classification that account for potential correlation between genomic variations within CRC subtypes and their corresponding cellular morphology as expressed by H&E imaging phenotypes may elucidate the biological cues impacting cancer histopathological imaging phenotypes.
AB - Molecular subtypes of colorectal cancer (CRC) significantly influence treatment decisions. While convolutional neural networks (CNNs) have recently been introduced for automated CRC subtype identification using H&E stained histopathological images, the correlation between CRC subtype genomic variants and their corresponding cellular morphology expressed by their imaging phenotypes is yet to be fully explored. The goal of this study was to determine such correlations by incorporating genomic variants in CNN models for CRC subtype classification from H&E images. We utilized the publicly available TCGA-CRC-DX dataset, which comprises whole slide images from 360 CRC-diagnosed patients (260 for training and 100 for testing). This dataset also provides information on CRC subtype classifications and genomic variations. We trained CNN models for CRC subtype classification that account for potential correlation between genomic variations within CRC subtypes and their corresponding cellular morphology patterns. We assessed the interplay between CRC subtypes’ genomic variations and cellular morphology patterns by evaluating the CRC subtype classification accuracy of the different models in a stratified 5-fold cross-validation experimental setup using the area under the ROC curve (AUROC) and average precision (AP) as the performance metrics. The CNN models that account for potential correlation between genomic variations within CRC subtypes and their cellular morphology pattern achieved superior accuracy compared to the baseline CNN classification model that does not account for genomic variations when using either single-nucleotide-polymorphism (SNP) molecular features (AUROC: 0.824±0.02 vs. 0.761±0.04, p<0.05, AP: 0.652±0.06 vs. 0.58±0.08) or CpG-Island methylation phenotype (CIMP) molecular features (AUROC: 0.834±0.01 vs. 0.787±0.03, p<0.05, AP: 0.687±0.02 vs. 0.64±0.05). Combining the CNN models account for variations in CIMP and SNP further improved classification accuracy (AUROC: 0.847 ±0.01 vs. 0.787±0.03, p = 0.01, AP: 0.68±0.02 vs. 0.64±0.05). The improved accuracy of CNN models for CRC subtype classification that account for potential correlation between genomic variations within CRC subtypes and their corresponding cellular morphology as expressed by H&E imaging phenotypes may elucidate the biological cues impacting cancer histopathological imaging phenotypes.
UR - http://www.scopus.com/inward/record.url?scp=85203527213&partnerID=8YFLogxK
U2 - https://doi.org/10.1371/journal.pone.0309380
DO - https://doi.org/10.1371/journal.pone.0309380
M3 - مقالة
SN - 1932-6203
VL - 19
JO - PLoS ONE
JF - PLoS ONE
IS - 9
M1 - e0309380
ER -