Abstract
The future of small gas turbines relies on higher-efficiency and higher-pressure-ratio centrifugal compressors for lighter, more efficient, and reliable designs. An efficient diffuser is essential to the performance, durability, and operability of a modern compressor stage. The diffuser entry flow in a high-speed centrifugal compressor is highly unsteady and complex, featuring shocks, boundary-layer/shock interactions, and large incidence variations imposed on the diffuser vanes. The observed flow structures are not only unsteady, but they are also strongly dependent on the steady compressor-stage loading. To characterize the variation in diffuser flow at different operating points of a modern transonic centrifugal compressor particle image velocimetry experiments are conducted in the Purdue University high-speed centrifugal compressor facility. The data at all loading conditions demonstrated that the flowfield in the diffuser is characterized by a much more complicated structure than that associated with steady uniform diffusion. The semivaneless-space acceleration region's size is shown to be weakly dependent on loading, whereas the diffuser throat structures are strong functions of the loading condition.
Original language | English |
---|---|
Pages (from-to) | 296-305 |
Number of pages | 10 |
Journal | Journal of Propulsion and Power |
Volume | 27 |
Issue number | 2 |
DOIs | |
State | Published - 2011 |
Externally published | Yes |
All Science Journal Classification (ASJC) codes
- Aerospace Engineering
- Fuel Technology
- Mechanical Engineering
- Space and Planetary Science