Experimental realization of wave-packet dynamics in cyclic quantum walks

Farshad Nejadsattari, Yingwen Zhang, Frédéric Bouchard, Hugo Larocque, Alicia Sit, Eliahu Cohen, Robert Fickler, Ebrahim Karimi

Research output: Contribution to journalArticlepeer-review

Abstract

Quantum walks present novel tools for redesigning quantum algorithms, universal quantum computations, and quantum simulators. Hitherto, one- and two-dimensional quantum systems (lattices) have been simulated and studied with photonic systems. Here, we report the photonic simulation of cyclic quantum systems, such as hexagonal structures. We experimentally explore the wavefunction dynamics and probability distribution of a quantum particle located on a six-site system, along with three- and four-site systems while under different initial conditions. Various quantum walk systems employing Hadamard, C-NOT, and Pauli-Z gates are experimentally simulated, where we find configurations capable of simulating particle transport and probability density localization. Our technique can potentially be integrated into small-scale structures using microfabrication, and thus would open a venue towards simulating more complicated quantum systems comprised of cyclic structures.

Original languageEnglish
Pages (from-to)174-180
Number of pages7
JournalOptica
Volume6
Issue number2
DOIs
StatePublished - 20 Feb 2019
Externally publishedYes

All Science Journal Classification (ASJC) codes

  • Electronic, Optical and Magnetic Materials
  • Atomic and Molecular Physics, and Optics

Fingerprint

Dive into the research topics of 'Experimental realization of wave-packet dynamics in cyclic quantum walks'. Together they form a unique fingerprint.

Cite this