Abstract
We examine the radiation emitted by high-energy positrons channeled into silicon crystal samples. The positrons are modeled as semiclassical vector currents coupled to an Unruh-DeWitt detector to incorporate any local change in the energy of the positron. In the subsequent accelerated QED analysis, we discover a Larmor formula and power spectrum that are both thermalized by the acceleration. Thus, these systems explicitly exhibit thermalization of the detector energy gap at the celebrated Fulling-Davies-Unruh (FDU) temperature. Our derived power spectrum, with a nonzero energy gap, is then shown to have an excellent statistical agreement with high-energy channeling experiments and also provides a method to directly measure the FDU temperature. We also investigate the Rindler horizon dynamics and confirm that the Bekenstein-Hawking area-entropy law is satisfied in these experiments. As such, we present the evidence for the first observation of acceleration-induced thermality in a nonanalog system.
Original language | English |
---|---|
Article number | 025015 |
Journal | Physical Review D |
Volume | 104 |
Issue number | 2 |
DOIs | |
State | Published - 15 Jul 2021 |
All Science Journal Classification (ASJC) codes
- Physics and Astronomy (miscellaneous)
- Nuclear and High Energy Physics