Abstract
Ubiquitination-the attachment of ubiquitin to a protein target-is involved in a wide range of cellular processes in eukaryotes. This dynamic posttranslational modification utilizes three enzymes to link, through an isopeptide bond, the C-terminal Gly of ubiquitin to the lysine side chain from a protein target. Progress in the field aiming at deciphering the role of ubiquitination in biological processes has been very dependent on the discovery of the enzymatic machinery, which is known to be very specific to each protein target. Chemical approaches offer a complementary route to the biochemical methods to construct these conjugates in vitro in order to assist in unraveling the role of ubiquitination on protein function. Herein is presented a novel method for the rapid synthesis of ubiquitinated peptides employing solid-phase peptide to generate the critical isopeptide linkage. Using these tools, several ubiquitinated peptides derived from known ubiquitinated proteins were prepared. Among them is the ubiquitinated C-terminal fragment of H2B, which can be used in the synthesis of monoubiquitinated H2B. For the first time, we systematically assessed the effect of the length of the ubiquitinated peptides on the UCH-L3 activity and found that peptides of up to ∼20 residues are preferred substrates.
Original language | American English |
---|---|
Pages (from-to) | 137-143 |
Number of pages | 7 |
Journal | Bioconjugate Chemistry |
Volume | 22 |
Issue number | 2 |
DOIs | |
State | Published - 16 Feb 2011 |
All Science Journal Classification (ASJC) codes
- Biotechnology
- Bioengineering
- Biomedical Engineering
- Pharmacology
- Pharmaceutical Science
- Organic Chemistry