TY - JOUR
T1 - Evolution of Light Absorption Enhancement of Black Carbon Aerosols From Biomass Burning in Atmospheric Photochemical Aging
AU - Fu, Xuewei
AU - Li, Xinyi
AU - Zhang, Fang
AU - Ren, Zhuoyue
AU - Ge, Aoqi
AU - Zhang, Xiangyu
AU - Fang, Zheng
AU - Song, Wei
AU - Deng, Wei
AU - Zhang, Yanli
AU - Rudich, Yinon
AU - Wang, Xinming
N1 - Publisher Copyright: © 2024. American Geophysical Union. All Rights Reserved.
PY - 2024/8/28
Y1 - 2024/8/28
N2 - The light absorption enhancement (Eabs) of black carbon (BC) coated with non-BC materials is crucial in the assessment of radiative forcing, yet its evolution during photochemical aging of plumes from biomass burning, the globe's largest source of BC, remains poorly understood. In this study, plumes from open burning of corn straw were introduced into a smog chamber to explore the evolution of Eabs during photochemical aging. The light absorption of BC was measured with and without coating materials by using a thermodenuder, while the size distributions of aerosols and composition of BC coating materials were also monitored. Eabs was found to increase initially, and then decrease with an overall downward trend. The lensing effect dominated in Eabs at 520 nm, with an estimated contribution percentages of 47.5%–94.5%, which is far greater than light absorption of coated brown carbon (BrC). The effects of thickening and chemical composition changes of the coating materials on Eabs were evaluated through comparing measured Eabs with that calculated by the Mie theory. After OH exposure of 1 × 1010 molecules cm−3 s, the thickening of coating materials led to an Eabs increase by 3.2% ± 1.6%, while the chemical composition changes or photobleaching induced an Eabs decrease by 4.7% ± 0.6%. Simple forcing estimates indicate that coated BC aerosols exhibit warming effects that were reduced after aging. The oxidation of light-absorbing CxHy compounds, such as polycyclic aromatic hydrocarbons (PAHs), to CxHyO and CxHyO>1 compounds in coating materials may be responsible for the photobleaching of coated BrC.
AB - The light absorption enhancement (Eabs) of black carbon (BC) coated with non-BC materials is crucial in the assessment of radiative forcing, yet its evolution during photochemical aging of plumes from biomass burning, the globe's largest source of BC, remains poorly understood. In this study, plumes from open burning of corn straw were introduced into a smog chamber to explore the evolution of Eabs during photochemical aging. The light absorption of BC was measured with and without coating materials by using a thermodenuder, while the size distributions of aerosols and composition of BC coating materials were also monitored. Eabs was found to increase initially, and then decrease with an overall downward trend. The lensing effect dominated in Eabs at 520 nm, with an estimated contribution percentages of 47.5%–94.5%, which is far greater than light absorption of coated brown carbon (BrC). The effects of thickening and chemical composition changes of the coating materials on Eabs were evaluated through comparing measured Eabs with that calculated by the Mie theory. After OH exposure of 1 × 1010 molecules cm−3 s, the thickening of coating materials led to an Eabs increase by 3.2% ± 1.6%, while the chemical composition changes or photobleaching induced an Eabs decrease by 4.7% ± 0.6%. Simple forcing estimates indicate that coated BC aerosols exhibit warming effects that were reduced after aging. The oxidation of light-absorbing CxHy compounds, such as polycyclic aromatic hydrocarbons (PAHs), to CxHyO and CxHyO>1 compounds in coating materials may be responsible for the photobleaching of coated BrC.
UR - http://www.scopus.com/inward/record.url?scp=85201070431&partnerID=8YFLogxK
U2 - https://doi.org/10.1029/2024JD040756
DO - https://doi.org/10.1029/2024JD040756
M3 - مقالة
SN - 2169-897X
VL - 129
JO - Journal of Geophysical Research: Atmospheres
JF - Journal of Geophysical Research: Atmospheres
IS - 16
M1 - e2024JD040756
ER -