Every Set in P Is Strongly Testable Under a Suitable Encoding

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We show that every set in P is strongly testable under a suitable encoding. By " strongly testable " we mean having a (proximity oblivious) tester that makes a constant number of queries and rejects with probability that is proportional to the distance of the tested object from the property. By a " suitable encoding " we mean one that is polynomial-time computable and invertible. This result stands in contrast to the known fact that some sets in P are extremely hard to test, providing another demonstration of the crucial role of representation in the context of property testing. The testing result is proved by showing that any set in P has a strong canonical PCP, where canonical means that (for yes-instances) there exists a single proof that is accepted with probability 1 by the system, whereas all other potential proofs are rejected with probability proportional to their distance from this proof. In fact, we show that UP equals the class of sets having strong canonical PCPs (of logarithmic randomness), whereas the class of sets having strong canonical PCPs with polynomial proof length equals " unambiguous-MA ". Actually, for the testing result, we use a PCP-of-Proximity version of the foregoing notion and an analogous positive result (i.e., strong canonical PCPPs of logarithmic randomness for any set in UP).
Original languageEnglish
Title of host publication10th Innovations in Theoretical Computer Science, ITCS 2019
EditorsAvrim Blum
Number of pages17
Volume124
ISBN (Electronic)9783959770958
DOIs
StatePublished - 1 Jan 2019
Event10th Annual Innovations in Theoretical Computer Science conference (ITCS 2019) - San Diego, California, USA
Duration: 10 Jan 201912 Jan 2019

Publication series

NameLeibniz International Proceedings in Informatics (LIPIcs)

Conference

Conference10th Annual Innovations in Theoretical Computer Science conference (ITCS 2019)
Period10/01/1912/01/19

Fingerprint

Dive into the research topics of 'Every Set in P Is Strongly Testable Under a Suitable Encoding'. Together they form a unique fingerprint.

Cite this