Evaluating the evaluation of diversity in natural language generation

Guy Tevet, Jonathan Berant

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Despite growing interest in natural language generation (NLG) models that produce diverse outputs, there is currently no principled method for evaluating the diversity of an NLG system. In this work, we propose a framework for evaluating diversity metrics. The framework measures the correlation between a proposed diversity metric and a diversity parameter, a single parameter that controls some aspect of diversity in generated text. For example, a diversity parameter might be a binary variable used to instruct crowdsourcing workers to generate text with either low or high content diversity. We demonstrate the utility of our framework by: (a) establishing best practices for eliciting diversity judgments from humans, (b) showing that humans substantially outperform automatic metrics in estimating content diversity, and (c) demonstrating that existing methods for controlling diversity by tuning a “decoding parameter” mostly affect form but not meaning. Our framework can advance the understanding of different diversity metrics, an essential step on the road towards better NLG systems.

Original languageEnglish
Title of host publicationEACL 2021 - 16th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference
PublisherAssociation for Computational Linguistics (ACL)
Pages326-346
Number of pages21
ISBN (Electronic)9781954085022
DOIs
StatePublished - 2021
Event16th Conference of the European Chapter of the Associationfor Computational Linguistics, EACL 2021 - Virtual, Online
Duration: 19 Apr 202123 Apr 2021

Publication series

NameEACL 2021 - 16th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference

Conference

Conference16th Conference of the European Chapter of the Associationfor Computational Linguistics, EACL 2021
CityVirtual, Online
Period19/04/2123/04/21

All Science Journal Classification (ASJC) codes

  • Software
  • Computational Theory and Mathematics
  • Linguistics and Language

Fingerprint

Dive into the research topics of 'Evaluating the evaluation of diversity in natural language generation'. Together they form a unique fingerprint.

Cite this