Estimating QoE from Encrypted Video Conferencing Traffic

Michael Sidorov, Raz Birman, Ofer Hadar, Amit Dvir

Research output: Contribution to journalArticlepeer-review

Abstract

Traffic encryption is vital for internet security but complicates analytical applications like video delivery optimization or quality of experience (QoE) estimation, which often rely on clear text data. While many models address the problem of QoE prediction in video streaming, the video conferencing (VC) domain remains underexplored despite rising demand for these applications. Existing models often provide low-resolution predictions, categorizing QoE into broad classes such as “high” or “low”, rather than providing precise, continuous predictions. Moreover, most models focus on clear-text rather than encrypted traffic. This paper addresses these challenges by analyzing a large dataset of Zoom sessions and training five classical machine learning (ML) models and two custom deep neural networks (DNNs) to predict three QoE indicators: frames per second (FPS), resolution (R), and the naturalness image quality evaluator (NIQE). The models achieve mean error rates of 8.27%, 7.56%, and 2.08% for FPS, R, and NIQE, respectively, using a 10-fold cross-validation technique. This approach advances QoE assessment for encrypted traffic in VC applications.

Original languageAmerican English
Article number1009
JournalSensors
Volume25
Issue number4
DOIs
StatePublished - 1 Feb 2025

Keywords

  • deep learning
  • encrypted traffic
  • machine learning
  • quality of experience
  • video conferencing

All Science Journal Classification (ASJC) codes

  • Analytical Chemistry
  • Information Systems
  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Electrical and Electronic Engineering
  • Biochemistry

Cite this