Error Exponents in Distributed Hypothesis Testing of Correlations

Uri Hadar, Jingbo Liu, Yury Polyanskiy, Ofer Shayevitz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We study a distributed hypothesis testing problem where two parties observe i.i.d. samples from two ρ-correlated standard normal random variables X and Y. The party that observes the X-samples can communicate R bits per sample to the second party, that observes the Y-samples, in order to test between two correlation values. We investigate the best possible type-II error subject to a fixed type-I error, and derive an upper (impossibility) bound on the associated type-II error exponent. Our techniques include representing the conditional Y-samples as a trajectory of the Ornstein-Uhlenbeck process, and bounding the associated KL divergence using the subadditivity of the Wasserstein distance and the Gaussian Talagrand inequality.

Original languageEnglish
Title of host publication2019 IEEE International Symposium on Information Theory, ISIT 2019 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2674-2678
Number of pages5
ISBN (Electronic)9781538692912
DOIs
StatePublished - Jul 2019
Event2019 IEEE International Symposium on Information Theory, ISIT 2019 - Paris, France
Duration: 7 Jul 201912 Jul 2019

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2019-July

Conference

Conference2019 IEEE International Symposium on Information Theory, ISIT 2019
Country/TerritoryFrance
CityParis
Period7/07/1912/07/19

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • Information Systems
  • Modelling and Simulation
  • Applied Mathematics

Fingerprint

Dive into the research topics of 'Error Exponents in Distributed Hypothesis Testing of Correlations'. Together they form a unique fingerprint.

Cite this