Abstract
In this Note, we propose a new methodology based on exploratory data mining techniques to evaluate the errors due to the description of a given real system. First, we decompose this description error into four types of sources. Then, we construct databases of the entire information produced by different numerical approximation methods, to assess and compare the significant differences between these methods, using techniques like decision trees, Kohonen's cards, or neural networks. As an example, we characterize specific states of the real system for which we can locally appreciate the accuracy between two kinds of finite elements methods. In this case, this allowed us to precise the classical Bramble-Hilbert theorem that gives a global error estimate, whereas our approach gives a local error estimate.
Original language | English |
---|---|
Pages (from-to) | 304-313 |
Number of pages | 10 |
Journal | Comptes Rendus - Mecanique |
Volume | 341 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2013 |
Keywords
- Asymptotic analysis
- Data mining
- Error estimate
- Paraxial model
- Vlasov-Maxwell equations
All Science Journal Classification (ASJC) codes
- Mechanics of Materials
- General Materials Science