Erosion-driven Size Redistribution of Protoplanetary Disk Solids and the Onset of Streaming Instability and Pebble Accretion

Evgeni Grishin, Mor Rozner, Hagai B. Perets

Research output: Contribution to journalArticlepeer-review

Abstract

The formation of the first planetesimals and the final growth of planetary cores relies on the abundance of small pebbles. The efficiencies of both the streaming instability (SI) process, suggested to catalyze the early growth of planetesimals, and the pebble-accretion process, suggested to accelerate the growth of planetary cores, depend on the sizes of solids residing in the disk. In particular, these processes were found to be sensitive to size distribution of solids, and efficient planetesimal formation and growth through these channels require a limited pebble size distribution. Here we show that aeolian erosion, a process that efficiently grinds down boulders into a mono-sized distribution of pebbles, provides a natural upper limit for the maximal pebble sizes (in terms of their Stokes number). We find the dependence of this upper limit on the radial separation, disk age, turbulence strength, and the grain-size composition of the boulders in the disk. SI is favorable in areas with a Stokes number less than 0.1, which is found in the inner sub-astronomical-unit regions of the disk. This upper limit shapes the size distribution of small pebbles and thereby catalyzes the early onset of planetesimal formation due to SI, and the later core accretion growth through pebble accretion.

Original languageEnglish
Article numberL13
JournalAstrophysical Journal Letters
Volume898
Issue number1
DOIs
StatePublished - 20 Jul 2020

All Science Journal Classification (ASJC) codes

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'Erosion-driven Size Redistribution of Protoplanetary Disk Solids and the Onset of Streaming Instability and Pebble Accretion'. Together they form a unique fingerprint.

Cite this