Epigenetic genome-wide association methylation in aging and longevity

Danny Ben-Avraham, Radhika H. Muzumdar, Gil Atzmon

Research output: Contribution to journalReview articlepeer-review

Abstract

The aging phenotype is the result of a complex interaction between genetic, epigenetic and environmental factors. Evidence suggests that epigenetic changes (i.e., a set of reversible, heritable changes in gene function or other cell phenotype that occurs without a change in DNA sequence) may affect the aging process and may be one of the central mechanisms by which aging predisposes to many age-related diseases. The total number of altered methylation sites increases with increasing age, such that they could serve as marker for chronological age. This article systematically highlights the advances made in the field of epigenomics and their contribution to the understanding of the complex physiology of aging, lifespan and age-associated diseases.

Original languageAmerican English
Pages (from-to)503-509
Number of pages7
JournalEpigenomics
Volume4
Issue number5
DOIs
StatePublished - Oct 2012
Externally publishedYes

Keywords

  • EWAS
  • aging
  • longevity
  • methylation

All Science Journal Classification (ASJC) codes

  • Genetics
  • Cancer Research

Fingerprint

Dive into the research topics of 'Epigenetic genome-wide association methylation in aging and longevity'. Together they form a unique fingerprint.

Cite this