Entrainment of noise-induced and limit cycle oscillators under weak noise

Namiko Mitarai, Uri Alon, Mogens H. Jensen

Research output: Contribution to journalArticlepeer-review

Abstract

Theoretical models that describe oscillations in biological systems are often either a limit cycle oscillator, where the deterministic nonlinear dynamics gives sustained periodic oscillations, or a noise-induced oscillator, where a fixed point is linearly stable with complex eigenvalues, and addition of noise gives oscillations around the fixed point with fluctuating amplitude. We investigate how each class of models behaves under the external periodic forcing, taking the well-studied van der Pol equation as an example. We find that when the forcing is additive, the noise-induced oscillator can show only one-to-one entrainment to the external frequency, in contrast to the limit cycle oscillator which is known to entrain to any ratio. When the external forcing is multiplicative, on the other hand, the noise-induced oscillator can show entrainment to a few ratios other than one-to-one, while the limit cycle oscillator shows entrain to any ratio. The noise blurs the entrainment in general, but clear entrainment regions for limit cycles can be identified as long as the noise is not too strong.

Original languageEnglish
Article number023125
JournalChaos
Volume23
Issue number2
DOIs
StatePublished - Jun 2013

All Science Journal Classification (ASJC) codes

  • Applied Mathematics
  • Statistical and Nonlinear Physics
  • General Physics and Astronomy
  • Mathematical Physics

Fingerprint

Dive into the research topics of 'Entrainment of noise-induced and limit cycle oscillators under weak noise'. Together they form a unique fingerprint.

Cite this