Abstract
We consider information spreading measures in randomly initialized variational quantum circuits and introduce entanglement diagnostics for efficient variational quantum/classical computations. We establish a robust connection between entanglement measures and optimization accuracy by solving two eigensolver problems for Ising Hamiltonians with nearest-neighbor and long-range spin interactions. As the circuit depth affects the average entanglement of random circuit states, the entanglement diagnostics can identify a high-performing depth range for optimization tasks encoded in local Hamiltonians. We argue, based on an eigensolver problem for the Sachdev-Ye-Kitaev model, that entanglement alone is insufficient as a diagnostic to the approximation of volume-law entangled target states and that a large number of circuit parameters is needed for such an optimization task.
Original language | English |
---|---|
Article number | 073101 |
Journal | Journal of Statistical Mechanics: Theory and Experiment |
Volume | 2022 |
Issue number | 7 |
DOIs | |
State | Published - 1 Jul 2022 |
Keywords
- entanglement entropies
- quantum computation
- quantum information
All Science Journal Classification (ASJC) codes
- Statistical and Nonlinear Physics
- Statistics and Probability
- Statistics, Probability and Uncertainty