TY - JOUR
T1 - Enhancement of Power Conversion Efficiency of Non-Fullerene Organic Solar Cells Using Green Synthesized Au–Ag Nanoparticles
AU - Okai, Victor
AU - Chahul, Habibat Faith
AU - Shikler, Rafi
N1 - Publisher Copyright: © 2023 by the authors.
PY - 2023/3/1
Y1 - 2023/3/1
N2 - Organic-based photovoltaics are excellent candidates for renewable energy alternatives to fossil fuels due to their low weight, low manufacturing cost, and, in recent years, high efficiency, which is now above 18%. However, one cannot ignore the environmental price of the fabrication procedure due to the usage of toxic solvents and high-energy input equipment. In this work, we report on the enhancement of the power conversion efficiency non-fullerene organic solar cells by incorporating green synthesised Au–Ag nanoparticles, using onion bulb extract, into the hole transport layer poly (3,4-ethylene dioxythiophene)-poly (styrene sulfonate) (PEDOT: PSS) of Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3 fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]: 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (PTB7-Th: ITIC) bulk-heterojunction organic solar cells. Red onion has been reported to contain quercetin, which serves as a capping agent that covers bare metal nanoparticles, thus reducing exciton quenching. We found that the optimized volume ratio of NPs to PEDOT: PSS is 0.06:1. At this ratio, a 24.7% enhancement in power conversion efficiency of the cell is observed, corresponding to a 9.11% power conversion efficiency (PCE). This enhancement is due to an increase in the generated photocurrent and a decrease in the serial resistance and recombination, as extracted from the fitting of the experimental data to a non-ideal single diode solar cell model. It is expected that the same procedure can be applied to other non-fullerene acceptor-based organic solar cells, leading to an even higher efficiency with minimal effect on the environment.
AB - Organic-based photovoltaics are excellent candidates for renewable energy alternatives to fossil fuels due to their low weight, low manufacturing cost, and, in recent years, high efficiency, which is now above 18%. However, one cannot ignore the environmental price of the fabrication procedure due to the usage of toxic solvents and high-energy input equipment. In this work, we report on the enhancement of the power conversion efficiency non-fullerene organic solar cells by incorporating green synthesised Au–Ag nanoparticles, using onion bulb extract, into the hole transport layer poly (3,4-ethylene dioxythiophene)-poly (styrene sulfonate) (PEDOT: PSS) of Poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b′]dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3 fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl)]: 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5,6-b′]dithiophene (PTB7-Th: ITIC) bulk-heterojunction organic solar cells. Red onion has been reported to contain quercetin, which serves as a capping agent that covers bare metal nanoparticles, thus reducing exciton quenching. We found that the optimized volume ratio of NPs to PEDOT: PSS is 0.06:1. At this ratio, a 24.7% enhancement in power conversion efficiency of the cell is observed, corresponding to a 9.11% power conversion efficiency (PCE). This enhancement is due to an increase in the generated photocurrent and a decrease in the serial resistance and recombination, as extracted from the fitting of the experimental data to a non-ideal single diode solar cell model. It is expected that the same procedure can be applied to other non-fullerene acceptor-based organic solar cells, leading to an even higher efficiency with minimal effect on the environment.
KW - Au–Ag
KW - green synthesis
KW - non-fullerene
KW - onion-extract
KW - organic solar cell
KW - scattering
UR - http://www.scopus.com/inward/record.url?scp=85152631890&partnerID=8YFLogxK
U2 - https://doi.org/10.3390/polym15061482
DO - https://doi.org/10.3390/polym15061482
M3 - Article
C2 - 36987263
SN - 2073-4360
VL - 15
JO - Polymers
JF - Polymers
IS - 6
M1 - 1482
ER -