Energy-Chirp Compensation in a Laser Wakefield Accelerator

Andreas Dopp, C. Thaury, E. Guillaume, F. Massimo, A. Lifschitz, I. Andriyash, J. -P. Goddet, A. Tazfi, K. Ta Phuoc, V. Malka

Research output: Contribution to journalArticlepeer-review

Abstract

The energy spread in laser wakefield accelerators is primarily limited by the energy chirp introduced during the injection and acceleration processes. Here, we propose the use of longitudinal density tailoring to reduce the beam chirp at the end of the accelerator. Experimental data sustained by quasi-3D particle-in-cell simulations show that broadband electron beams can be converted to quasimonoenergetic beams of ≤10% energy spread while maintaining a high charge of more than 120 pC. In the linear and quasilinear regimes of wakefield acceleration, the method could provide even lower, subpercent level, energy spread.

Original languageEnglish
Article number074802
Number of pages5
JournalPhysical review letters
Volume121
Issue number7
DOIs
StatePublished - 17 Aug 2018

Fingerprint

Dive into the research topics of 'Energy-Chirp Compensation in a Laser Wakefield Accelerator'. Together they form a unique fingerprint.

Cite this