End-to-End Segmentation of Medical Images via Patch-Wise Polygons Prediction

Tal Shaharabany, Lior Wolf

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The leading medical image segmentation methods represent the output map as a pixel grid. We present an alternative in which the object edges are modeled, per image patch, as a polygon with k vertices that is coupled with per-patch label probabilities. The vertices are optimized by employing a differentiable neural renderer to create a raster image. The delineated region is then compared with the ground truth segmentation. Our method obtains multiple state-of-the-art results for the Gland segmentation dataset (Glas), the Nucleus challenges (MoNuSeg), and multiple polyp segmentation datasets, as well as for non-medical benchmarks, including Cityscapes, CUB, and Vaihingen. Our code for training and reproducing these results is attached as a supplement.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings
EditorsLinwei Wang, Qi Dou, P. Thomas Fletcher, Stefanie Speidel, Shuo Li
PublisherSpringer Science and Business Media Deutschland GmbH
Pages308-318
Number of pages11
ISBN (Print)9783031164422
DOIs
StatePublished - 2022
Event25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 - Singapore, Singapore
Duration: 18 Sep 202222 Sep 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13435 LNCS

Conference

Conference25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022
Country/TerritorySingapore
CitySingapore
Period18/09/2222/09/22

All Science Journal Classification (ASJC) codes

  • Theoretical Computer Science
  • General Computer Science

Fingerprint

Dive into the research topics of 'End-to-End Segmentation of Medical Images via Patch-Wise Polygons Prediction'. Together they form a unique fingerprint.

Cite this