@inproceedings{e8483115977247558e1882a00b0794be,
title = "End-to-End Segmentation of Medical Images via Patch-Wise Polygons Prediction",
abstract = "The leading medical image segmentation methods represent the output map as a pixel grid. We present an alternative in which the object edges are modeled, per image patch, as a polygon with k vertices that is coupled with per-patch label probabilities. The vertices are optimized by employing a differentiable neural renderer to create a raster image. The delineated region is then compared with the ground truth segmentation. Our method obtains multiple state-of-the-art results for the Gland segmentation dataset (Glas), the Nucleus challenges (MoNuSeg), and multiple polyp segmentation datasets, as well as for non-medical benchmarks, including Cityscapes, CUB, and Vaihingen. Our code for training and reproducing these results is attached as a supplement.",
author = "Tal Shaharabany and Lior Wolf",
note = "Publisher Copyright: {\textcopyright} 2022, The Author(s), under exclusive license to Springer Nature Switzerland AG.; 25th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2022 ; Conference date: 18-09-2022 Through 22-09-2022",
year = "2022",
doi = "https://doi.org/10.1007/978-3-031-16443-9_30",
language = "الإنجليزيّة",
isbn = "9783031164422",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Science and Business Media Deutschland GmbH",
pages = "308--318",
editor = "Linwei Wang and Qi Dou and Fletcher, {P. Thomas} and Stefanie Speidel and Shuo Li",
booktitle = "Medical Image Computing and Computer Assisted Intervention – MICCAI 2022 - 25th International Conference, Proceedings",
address = "ألمانيا",
}